NOID(1) Batchldentifier Infrastructure NOID(1)

NAME
noid — nice opaque identifier generator commands

SYNOPSIS
noid [—f Dbdir] [=vh] Command Arguments

DESCRIPTION
Thenoid utility creates minters (identifier generators) and accepts commands that operate
them. Oncecreated, a minter can be used to produce persistent, globally unique names
for documents, databases, imagesallary terms, etc. Properly managed, these identi-
fiers can be used as long term durable information object references within naming
schemes such #RK, PURL, URN, DOI, andLSID. At the same time, alternaé minters
can be set up to produce shovetl names for transaction identifiers, compact webeserv
session kys, and other ephemera.

A noid minter is a lightweight database designed for efficiently generating, tracking, and
binding unique identifiers, which are produced without replacement in random or sequen-
tial order and with or without a check character that can be used for detecting transcrip-
tion errors. A minter can bind identifiers to arbitrary element names and elerakresv

that are either stored or produced upon redriérom rule-based transformations of
requested identifiers, the latter having application in identifier resoluNand minters

are very fast, scalable, easy to create and tear down, ema idatively small footprint.

They use BerkeleyDB as the underlying database.

An identifier generated byreoid minter is also known generically as‘aoid’” (standing

for nice opaque identifier and rhyming withid). While a minter can record and bind

ary identifiers that you bring to its attention, often it is used to generate, bringing to your
attention, identifier strings that carry no widely recognizable meaning. This semantic
opaqueness reduces their vulnerability to era— and language-specific change, and helps
persistence by making for identifiers that can age awd treell.

The form, numberand intended longevity of a mintsridentifiers are gen by a Tem-

plate and a Term supplied when the generator database is créasagplied Term of
“long” establishes extra restrictions and logging appropriate for the support of persistent
identifiers. Acrossuccessie mnting operations, the generator “uses’ufs namespace

(the pool of identifiers it is capable of minting) such that no identifier well lee gener-

ated twice unless the supplied Term ‘short” and the namespace is finite and com-
pletely exhausted. Thdefault Term is “medium”.

The noid utility parameters— flags,Dbdir (database locationf;ommang Arguments
— are described later und@OMMANDS AND MODES There are also sectionsveo-
ing persistence, templates, rule-based mappiRg,interface, and name resolution.

TUTORIAL INTRODUCTION
Once the noid utility is installed, the command,

noid dbcreate s.zd

will create a minter for an unlimited number of identifielsproduces a generator for
medium term identifiers (the default) with theniplate,s.zd , governing the order
number and form of minted identifier strings. These identifiers will begin with the

CDL 0.424 2006-04-19 1

NOID(1) Batchldentifier Infrastructure NOID(1)

constant pars and end in a digit (the final), all within an unbounded sequential)
namespace. ThEBEMPLATES section gves a ull explanation. Thisgenerator will mint
the identifiers, in order,

sO, s1, s2, ..., s9, s10, ..., s99, s100, ...
and neer run out. To mint the first ten identifiers,

noid mint 10
When you're done, on@NIX platform you can reme that minter with

rm -fr NOID
Now let’'s aeate a more compiaminter.

noid dbcreate f5.reedeedk long 13030 cdlib.org oac/cmp

This produces a generator for long term identifiers that begin with the constant part
13030/f5 . Exactly 70,728,100 identifiers will be minted before running out.

The 13030 parameter is the registered Name Assigning Authority NumhaNj for
the assigning authority known dsdlib.org”, and ‘oac/cmp’ is a gring chosen by the
person setting up this minter to identify the project that will be operatirighis particu-
lar minter generates identifiers that start with the piféfixn the 13030 namespac.
long term information retention is within the mission of youganization (this includes
national and uwersity libraries and arches), you may register for a globally unique
NAAN by sending email to ark at cdlib dot org.

Identifiers will emege in ‘quasi-randoni’ order, each consisting of six characters
matching up one-for-one with the lettexsdeed .

noid mint 1

The first identifier should b&3030/f54x54g11 , with the namespace ranging from a
low of 13030/f5000000s to a high of13030/f5zz9zz94 . You can create a
“locations’ element under a noid and bind three URLSs to it with the command,

noid bind set 13030/f54x549g11 locations \
'http://a.b.org/foo Chttp://c.d.org/bar Chttp://e.f.org/zaf’

The templates final k causes a computed check character to be added to the esedyof e
generated identifierlt also accounts for whthe lowest and highest noids look a little

odd on the end. The final check charactervadlaetection of the most common tran-
scription errors, namelyncorrect entry of one character and the transposition of tw
characters. Thaext command takes three identifiers that someone might ask you about
and determines that, despite appearances, only the first is in the namespace of this minter

noid validate - 13030/f54x549g11 13030/f54y54g11 \
13030/f54x45911

To make way for creation of another mintgrou can muee the entire minter into a subdi-
rectory with the command,

mkdir f57 ; mv NOID f57
A minter may be set up on a web sEndlowing the NAA organization easily to

CDL 0.424 2006-04-19 2

NOID(1) Batchldentifier Infrastructure NOID(1)

distribute name assigment to trusted parties operating from remote locafioesIRL
INTERFACE section describes the procedure in det@hce set up, you could mint one
identifier by entering &RL such as the following into your web browser:

http://foo.ucop.edu/nd/noidu_f57?mint+1

Using a different procedure, you can also engkur identifier bindings (e.g., location
information) visible to the Internet via aweweb server configuration direets. The
NAME RESOLUTIONsection explains this further.

IDENTIFIER — AN ASSOCIATION SUPPORTED BY BINDINGS
An identifier is not a string of character data an identifier is an association between a
string of data and an object. This abstraction is necessary because without it a string is
just data. It's nonsense to talk about a strigdireaking, or about its being strong, main-
tained, and authentic. But as a represemati an asociation, a string can do,
metaphoricallythe things that we expect of it.

Without rggard to whether an object is physical, digital, or conceptual, to identify it is to
claim an association between it and a represeatdating, such as‘Jane’ or “‘ISBN
0596000278. Whatgives your claim credibility is a set of verifiable assertions, or meta-
data, about the object, such as age, height, title, or number of pagisbility is out-

side the scope of the noid utilityut you can use a minter to record assertions supporting
an association by binding arbitrary named elements and values to the idehkiiér
database elements can be up to 4lgyges in length, and one noid minter is capable of
recording billions of identifiers.

You don’t haveto use the noid binding features at all if you preferdegktrack of your
metadata elsewhere, such as in a separate database managemenD8&ror(on a
sheet of paperin any case, for each noid generated, the minter automatically stores its
own lightweight ‘circulation” record asserting who generated it and when. If most of
your metadata is maintained in a separate database, the snimer'ecords play a back

up role, providing a small amount of redundaricat may be useful in reconstructing
database bindings thatueabecome damaged.

An arbitrary database system can complement a noid minter withpunaneness or
dependeng on roids. Oncomputers, identifier bindings are typically managed using
methods that at some point map identifier strings to database records and/or to filesystem
entries (eflectively using the filesystem as BBMS). The structures and logistics for
bindings maintenance may reside entirely with the minter database, entirely outside the
minter database, or ywhere in between. An individual genization defines whaver
maintenance configuration suits it.

PERSISTENCE
A persistent identifier is an identifier that agarization commits to retain in perpetuity
Associations, thsine qua norof identifiers, last only as long as yhen particular their
bindings) are maintainedOften maintaining identifiers goes hand in hand with control-
ling the objects to which tlyeare bound. No technology exists that automatically man-
ages objects and associations; persistence is a matter of service commitment, tools that
support that commitment, and information that allows users receiving identifiers @0 mak
the best judgment gerding an oganization’s aility and intention to maintain them.

CDL 0.424 2006-04-19 3

NOID(1) Batchldentifier Infrastructure NOID(1)

It will be normal for oganizations to maintain their own assertions about identifiers that
you issue, and viceevsa. Ingeneral there is nothing to pemat discrepancies among sets
of assertions.Effectively, the association— the identifier — is in the eye of the
beholder As a smple example, authors create bibliogramntries for cited works, and

in that process tlyemake their claims, often with small errors, about such things as the
author and title of the identified thing. It is common for avygter of an identifiedriven
service such as digital object retradéto allow users to reiew its own, typically better
maintained sets of identifier assertions (i.e., metadata),ieit minted none of the iden-
tifiers that it servicesWe @ll such an aanization a Name Mapping Authoriti]Ni1A)
because itmaps’ i dentifiers to services. It is possible for MMA to service identifiers
even if it neither hosts nor controls yaobjects.

It will also be normal for arching omganizations to maintain their own peculiar ideas
about what persistence meamifferent flavors will exist een within one oganization,

where, for example, it may be appropriate to apply corrections to persistent objects of one
category to neve change objects of anothaand to remee djects of a third cagory

with a promise neer to re-assign those objects’ identifiers. One institution will guarantee
persistence for certain things, while the strongest commitment made by some prominent
archives will be “reasonable €brt”. Given the range of possibilities, a memongarni-

zation will need to record not only the identities but also the support policies for objects
in its care. Ay database, including a noid mintean be used for this purpose.

For persistence across decades or centuries, opinigagliy an objecs identity and
commitments made to various copies of it will tend naturally to become mamseli

An object may hee keen inherited through a chain of weéedship, subtle identity
changes, and peaks of remel interest stretching back to a completely unrelated and no
defunct oganization that created and named Kor its original identifier to hae per-

sisted across the int@wing years, it must look the same as when first minted. At that
particular time, global uniqueness required the minted identifier to bear the imprint of the
issuing oganization (theNAA, or Name Assigning Authority), which long ago ceased to
have any esponsibility for its persistence. There is thus no conflict in a mapping author
ity (NMA) servicing identifiers that originate in madifferent assigning authorities.

These notions of fleors of persistence and separation of name authority functiorugire b
into the ARK (Archival Resource I€y) identifier scheme that theid utility was partly
created to support. By design, noid minters also work within other schemes in recogni-
tion that persistence has nothing to do with identifier syntax. Opaque identifiers can be
used by ay application needing to reduce the liability created when identifier strings
contain linguistic fragments that, \wever appropriate or ¥en meaningless the are

today may one day create confusionygidfense, or infringe on a trademark as the
semantic environment around us and our communitielyes. If employed for persis-
tence, noid minters ease the wmdable costs of long term maintenance by having a
small technical footprint and by being implemented completely as open sourcarsoftw
For more information on ARKSs, please see <http://ark.cdlib.org/> .

COMMANDS AND MODES
Once again, thewerall utility summary is

noid [—=f Dbdir] [=vh] Command Arguments

CDL 0.424 2006-04-19 4

NOID(1) Batchldentifier Infrastructure NOID(1)

In all invocations, output is intended to be both human- and machine-readaith
operations are possible, allmg multiple minting and binding commands within one
invocation. Inparticular if Commandis given as a “=’’ argument, then actuaCom-
mandsare read in bulk from the standard input.

The string,Dbdir, specifies the directory where the database resiflegrotect database
coherence, it should not be located on a filesystem sudRS&sr AFS that doesit’ sup-
port POSIXfile locking semanticsDbdir may be gren with theNOID ervironment \ari-
able, werridable with the-f option. Ifthose strings are empthe name or link name of
the noid executable (agv[0] for C programmers) is checked to see if vieeds Dbdir. If
that check (described next) fail3bdir is taken to be the current directory.

To dheck the name of thexecutable forDbdir, the final pathname component (tail) is
examined and split at the first *” encountered. Ihone, the checlafls. Otherwisethe
check is considered successful and the latter half is taken as rMabdirgelative o the
current directory This mechanism is designed for cases when it is uetwent to spec-
ify Dbdir (such as in th&RL interface) or when you are runningvesal minters at once.
As an exampleusr/bin/noid_fkSpecifies &bdir of fko.

All files associated with a minter will beganized in a subdirectorNOID, of Dbdir; this
has the consequence that there can be at most one minter in a diréctalgw noid to
create a ng minter in a directory already containingN®ID subdirectory remove a
rename the entirsOID subdirectory.

Thenoid utility may be run as a URL-dren web server application, such as ic@l that
allows name assignment via remote operatbthe eecutable bgins noidu..., the noid
URL mode is in dkct. Inputparameters, separated by+dsign, are expected to ard
embedded in the query part o)L, and output will be formatted for display on an ordi-
nary web brwser An executable ofnoidu_xk4, for example, wuld turn onURL mode
and seDbdir to xk4. This is further described undeRL INTERFACE.

The noid utility may be run as a name resolver running behind a welersdifvthe
executable bgins noidr..., the noid resoler mode is in effect, which means that com-
mands will be read from the standard input (as if only‘tHéargument had beengn)
and the script output will be unffered. Thismode is designed for machine interaction
and is intended to be operated by rewriting rules listed in a webrsamfiguration file
as described later unddéAME RESOLUTION AND REDIRECTION INTERACE.

At minter creation time, a report summarizing its properties is produced and stored in the
file, NOID/README This report may be useful to thegamization articulating the oper

ating poliy of the minter In a formal context, such as the creation of a minter for long
term identifiers, that genization is the Name Assigning Authority.

The-v option prints the current version of theid utility and —h prints a help message.

In the Commandiist below, capitalized symbols indicate values to be replaced by the
caller Optional arguments are in [brackets] andBAC) means one of A or B or C.

noid dbcreate[Template[Term [NAAN NAA SUINAA]]]
Create a database that will mint (generate) identifiers according tovemeTgm-
plate and €rm. Asa sde-efect this causes the creation of a direGgtbigID, within

CDL 0.424 2006-04-19 5

NOID(1) Batchldentifier Infrastructure NOID(1)

Dbdir. If you have ®veal generators, it may be ocmmient to operate each from
within a Dbdir that uniquely identifies each Template; for example, you might
change to a directory that you nanf&@ after the Emplatefk.rdeedde (“fk”
followed by 6 variable characters) of the minter that resides there.

The Term declares whether the identifiers are intended tmbg'*, ‘‘medium” (the
default), or ‘short”. A short term identifier minter is the only one that will re-mint
identifiers after the namespace is exhausted, simply returning the oldaestigse
minted identifier As mentioned earlierhoweve, some namespaces are unbounded
and neer run out of identifiers.

If Term is ‘long”, the agumentsNAAN, NAA, and SulNAA are required, and all
minted identifiers will be returned with ti¢AAN and a "’ prepended to them.
TheNAAN is a namespace identifier and should be a globally unique Name Assign-
ing Authority (NAA) number Apply for one by email to ark@cdlig, or for test-

ing purposes, use “0000@is a ron-uniqueNAAN.

The NAA argument is the character string eglent for theNAAN; for example,
13960 corresponds to ti¢AA, “archive.org”. The SubNAA argument is also a
character string, Wi is a locally determined and possibly structured subauthority
string (e.g., “oac”, “ucb/dpg”, “practice_area”) that is not globally registered.

If Template is not supplied, the minter freely bindy &tfentifier that you submit
without validating it first. In this case it also mints medium term identifiers under
the default Templatezd .

noid mint N [Element Valué
Generate N identifiers. If otherguments are specified, for each generated noid,
add the gien Element and bind it to thegn Value. [Element—&lue binding upon
minting is not implemented yet.]

There is no‘tnmint” command. Oncan identifier has been circulated in the out-
side world, it may be hard to withdvebecause xdernal users and systems wiliiea
bound it with their own assertion&ven within the minting @anization, remuing

all of the identifiers supporting bindings could entail actions such as file deletion
that are outside the scope of the minté&'hile there is no command capable of
withdrawing a circulated identifigiit is nonetheless easy tpueuean identifier for
reminting and tdold it against the possibility of minting at alldentifiers that are
long term should be treated as non-vegi#e resources except when you are abso-
lutely sure about recycling them.

noid peppermint N [Element Valué

[This command is not implemented yet.] Generate'deppered’ i dentifiers. A
peppered identifier is a regular identifier concatenated with’aharacter and a
randomly generated cookie- the pepper— which serves as a kind of piglenti-
fier passwrd. (Saltis a technical term for sometea data that makes it harder to
crack encrypted values; we use pepper for some extra data thed malarder to
crack unencryptedalues.) ® provide an extra hel of database securityhe base
identifier, which is eerything up to the ‘''’, should be used in all public

CDL 0.424 2006-04-19 6

NOID(1)

noid

CDL 0.424

Batchldentifier Infrastructure NOID(1)

communication, bt the complete peppered identifier is required for all noid opera-
tions that would change values in the database.

As with themint command, if other arguments are specified, for each generated
noid, add the gen Element and bind it to thegn Value.

bind How Id Element Value

For the gven Id, bind the Element toalue according to Ha The Element and
Value may be arbitrary strings. There ar@t@sered Element names allowingaV
ues to be entered that are too large or syntactically ven@nt (depending on the
calling environmens quoting restrictions) to pass in as command-line tokens.

If the Element is'”” and no Value is present, lines are read from the standard input
up to a blank line; thewill contain Element-colon-Value pairs in essentially email
header format, with longadues continued on indented lines. If the Elemerit+5 *

and no Value is present, lines are read from the standard input up to end—of-file; the
first non—-comment, non-blank line mustvhaan Element-colon to specify an Ele-
ment name, and all the remaining input (UpEtF) is taken as its corresponding
Value. Linesbeginning with ‘#'* are consideredcomment’ lines and are skipped.

The How argument specifies one of the following kinds of bindir@t these, the
set add, insert, and purge kinds “don’t care’ if t here is no current binding.

new Only if Element does not exist, create avri@nding.

replace
Only if Element exists, undo wmold bindings and create awéinding.

set Meansnewor, failing that,replace

append
Only if Element exists, place Value at the end of the old binding.

add Meansnewor, failing that,append

prepend
Only if Element exists, place Value at the beginning of the old binding.

insert Meansnew or, failing that,prepend.

delete Remare any tace of Element, returning an error if it did not exist tgibe
with.

purge Remawe any tace of Element, returning success whether or not it existed to
begin with.

mint Meansnew, but ignore the Id argument (actualepnfirm that it was gien as
new) and mint a ne Id first.

peppermint
[This kind of binding is not implemented yetMeansnew, but ignore the Id
argumentifew) and peppermint a neld first.

The RULE-BASED MAPPING section explains v to st up retrigal using non-
stored values.

2006-04-19 7

NOID(1) Batchldentifier Infrastructure NOID(1)

noid fetch Id [Element..]
For the noid, Id, print with labels all bindings for theven Elements. Iino Element
is given, find and print all bindings for thewvgn Id. Thisis the verbose version of
thegetcommand, in that it prints headers and labelsvJery¢hing it finds.

noid getld [Element..]
For the noid, Id, print without labels all bindings for theeg Elements. Ifno Ele-
ment is gven, find and print all bindings for thevgn Id. Thisis the quiet ersion
of the fetch command, in that it suppresses all headers and laBelsveen each
Element requested, the output will be separated by a blank line.

noid hold (setreleasg Id ...
Place or remee ahold on one or more IdsA hold placed on an Id that has not been
minted will cause it to be skipped when its turn to be minted comes ardumold
placed on an Id that has been minted will emakmpossible to queue (typically for
regycling). Minters of long term identifiers automatically place a hold were
minted noid. Holds can be placed or rembmanually at ap time.

noid queue(nowLTirstvfTime Id ...
Queue one or more Ids for mintingime is a number follwed by units, which can
bed for days ors for seconds (the default units). This can be used ienoids
now or after a delay periodWith first, the 1d(s) will be queued such that yhaill
be minted before amof the time-delayed entriesVith Ivf (Lowest Value First), the
lowest valued identifier (intended for use with numeric identifiers) will bentak
from the queue for minting before all othefsieeds testing]

noid validate (Templaté+) Id ...
Validate one or more Ids against aeyi Template, which, if gien as *=’’", causes
the minters native Templateto be used.

TEMPLATES
A Template is a coded string of the form Prefix.Mask thatvengio the noiddbcreate
command to geern hav identifiers will be minted. The Prefix, which may be empty
specifies an initial constant stringor example, upon database creation, in the Template

tb7r.zdd

the Prefix says thawvery minted identifier will begin with the literal stririp7r . Each
identifier will end in at least tavdigits (dd), and because of thethey will be sequen-
tially generated without limit.Beyond the first 100 mint operations, more digits will be
added as needed. The minted noids will be, in order,

tb7r00, tb7r01, ..., tb7r100, tb7r101, ..., tb7r1000, ...

The period (.”) in the Template does not appear in the identifietssbrves to separate

the constant first part (Prefix) from tharsable second part (Mask). In the Mask, the first
letter determines either random or sequential ordering and the remaining letters each
match up with characters in a generated identifferhaps the best way to introduce tem-
plates is with a series of increasingly compeamples.

.rddd to mint random 3-digit numbers, stopping after 1000th

CDL 0.424 2006-04-19 8

NOID(1) Batchldentifier Infrastructure NOID(1)

.sdddddd to mint sequential 6—digit numbers, stopping after millionth

.zd sequential numbers without limit, addingandigits as needed

bc.rdddd random 4-digit numbers with constant prddix

8rf.sdd sequential 2—-digit numbers with constant préfiik

.se sequential extended-digits (from 0123456789bcdfghjkmnpqrstvwxz)
h9.reee random 3-extended-digit numbers with constant preix

.zeee unlimited sequential numbers with at least 3 extended-digits

rdedeedd random 7-char numbers, extended-digits at chars 2, 4, and 5
.zededede unlimited mixed digits, adding meextended-digits as needed
sdd.sdede sequential 4—mixed-digit numbers with constant predict

rdedk random 3 mixed digits plus final (4th) computed check character
.Ssdeeedk 5 sequential mixed digits plus final extended-digit check char
.zdeek sequential digits plus check chaew dgits added as needed
63g.redek prefix plus random 4 mixed digits, one of them a check char

The first letter of the Mask, the generator type, determines the order and boundedness of
the namespacd-or example, in the &mplate.sddd , the Prefix is empty and tlsesays

that the namespace is sequentially generated but bounded. The generator type may be
one of,

r for quasi-randomly generated identifiers,

s for sequentially generated identifiers, limited in length and number by the length of
the Mask,

z for sequentially generated identifiers, unlimited in length or numbeusing the
most significant mask character (the second character of the Mask) as needed.

Although the order of minting is not obvious fotype minters, it is‘quasi—randoni’in
the sense that on your machine a minter created with the sanmate will alvays pro-
duce the same sequence of noider ats lifetime. Quasi-random is a shade more pre-
dictable than pseudo-random (which, techicadlyas andom as computers gef)his is a
feature designed to help noid managers in cageatkeorced to start minting again from
scratch; thg simply process their objects/er in the same order as before to resahe
original assignments.

After the generator type, the rest of the Mask determines the form of the non-Prefix part,
matching up lettefor-character with each generated noid character (an exception for the
z case is described b&). Inthe case of theémplatexv.sdddd , the last fourd Mask
characters say that all identifiers will end with four digits, so the last identifier in the
namespace isv9999 .

When z is used, the namespace is unbounded and therefore identifieryventilaly
need to grv in length. D accommodate the growth, the second charaeter ¢l) of the
Mask will be repeated as often as needed; for instance, when all 4-digit numbers are used
up, a 5th digit will be added. After the generator type charadi&sk characters ka the

CDL 0.424 2006-04-19 9

NOID(1) Batchldentifier Infrastructure NOID(1)

following meanings:
d apure digit, one of { 0123456789 }
e an ‘extended digit”, one of { 0123456789bcdfghjkmnpqgrstvwxz } (lower case only)

k a computed gtended digit check character; if present, it must be the final Mask
character

The set of extended digits is designed to help create more compact noids (a larger names-
pace for the same length of identifier) and discourageitiental semantics”, namely

the introduction of strings that & wintended bt commonly recognized meanings.
Opaque identifiers are desirable in pattuations and the absence aiwels in extended

digits is a step in that directiormo reduce visual mismatches, there is also no létter

(ell) because it is often mistaken for the digit “1”.

The optionalkk Mask charactemwhich may only appear at the end, enables detection of
cases when a single character is mistyped and wherdjacent characters & been
transposed — theost common transcription erroré finalk in the Mask will cause a
check character to be appended after first computing it on the entire identifier generated
so far, including theNAAN if one was specified at database creation tifRer. example,

the final digitl in

13030/f54x54911
was first computed zer the stringl3030/f54x54g1 and then added to the end.

RULE-BASED MAPPING
Any Element may be bound to a class of Ids such that vetaganst that Element for
ary Id in the class returns a computed value when no stored vekis. eTheclass of Ids
is specified via a regular expression (Perl-style) that will be eldeitk a match agnst
Ids submitted via a retwal operation et or fetch) that names gnElement bound in
this manner If the match succeeds, the element Value that was bound with the Id class is
used as the right-hand side of a Perl substitution, and the resulting transformation is
returned. V& all this rule-based mapping, and it is probably b&ptagned by verking
through the examples b&lo

To et up rule-based mapping for an Id class, constrbatchoperation with an Id of the
form :idmap/ Idpattern whereldpatternis a Perl regulargression. Therhoose an
Element name that you wish toveatrigger the pattern match check whegrethat Ele-
ment is requested via a retr@k operation and a stored value doeST exist; ary Ele-
ment will work as long as you use it for both binding and natrge Finally, specify a
Value to be used as replacement text that transforms matching lds into comgugsd v
via a Perl s/// substitution. As a simple example,

noid bind set :idmap/“ft redirect g7h

would cause ansubsequent retnal request against the Element naniegtlirect” to try
pattern matching when no stored value is foulidhe 1d begins with'ft’’, it would then
try to replace theft’’ with “g7h” and return the result as if it were a storedue. Saf
the Id werdt89xr2t , the command

noid get ft89xr2t redirect

CDL 0.424 2006-04-19 10

NOID(1) Batchldentifier Infrastructure NOID(1)

would returng7h89xr2t . Fancier substitutions are possible, including replacement
patterns that reference subexpressions in the original maticipagern For example,
the second command belo

noid bind set ":idmap/ ft(["x]+)x(.*)’ my_elem '$2/g7h/$1’
noid get ft89xr2t my_elem

would returnr2t/g7h/89 . For ease of implementation, internally this kind of binding
is stored and reported (which can be confusing) as the speciatidmdp/ Element
under element nanidpattern

URL INTERFACE
Any number of minters can be operated behind a web server from a browsgrtoolan
that actvates URLs. This section describes a one-time set up procedure &ymak
sener avare of minters, followed by another set up procedure for each mihber one-
time procedure wolves creating a directory in your web server document tree where you
will place one or more noid minter databasksthis example, the directory lédocs/nd
and we’ll assume theoid script was originally installed ifusr/local/bin

mkdir htdocs/nd
cp -p /usr/local/bin/noid htdocs/nd/

The second command alaeates anxecutable cop of the noid script that will be
linked to for each minter you intend tgp@se to the webTo make your server recognize
such links, include the line

ScriptAliasMatch “/nd/noidu(.*) "/srv/iwww/htdocs/nd/noidu$1"”

in your server configuration file and restart the server before trying the commands that
follow. If you did not install the supportingoid.pmmodule normally you may also
have © dore a cop of it next to the script. This completes the one-time server set up.

Thereafterfor each minter that you wish tapmose, it must first be allowed to write to its

own database when woked via the web serr. Because it will be running under a spe-

cial user at that time, before you create it, first become the user that your server runs
under In this example that user is “wwwrun”.

cd htdocs/nd

SU WWwrun

noid dbcreate kt.reeded
mkdir kt5

mv NOID kt5/

In noid noidu_kt5

The third command abe aeates a minter for noids beginning wikh followed by 5
characters. Theninter is then meed into its own directory withirhtdocs/nd Finally,

the last command makes a hard link (not a soft link) to the noid script, which for this
minter will be irvoked under the namaoidu_kt5.

The URL interface is similar to the command line interfacet @Gommandsire passed in

via the query string of &RL where by cowention a plus sign #’’) is used instead of
spaces to separatggaments. ¥u will likely want to set up access restrictions (e.g., with

an .htaccesdile) so that only the parties you designate can generate identifiers. There is

CDL 0.424 2006-04-19 11

NOID(1) Batchldentifier Infrastructure NOID(1)

also nodbcreatecommand ailable from theURL interface.

To mint one identifier you could enter the folleing URL into your web brawser but
replace “foo.ucop.edutvith your serves nrame:

http://foo.ucop.edu/nd/noidu_kt5?mint+1

Reload to mint again. If you change the 1 to 20, you get twemtyame different noids.
http://foo.ucop.edu/nd/noidu_kt5?mint+20

To hind some data to an element calledyGoto” under one of the noids already minted,

http://foo.ucop.edu/nd/noidu_kt5?
bind+set+13030/kt639k9+myGoto+http://foo.ucsd.edu/

In this case we storedURL in “myGoto”. This kind of corvention can underly a redi-
rection mechanism that is part of amarvizations overall identifier resolution strags.
To retrieve that stored data,

http://foo.ucop.edu/nd/noidu_kt5?get+13030/kt639k9+myGoto

Bulk operations can be performedenthe web by imoking theURL with a query string

of just “~"’, which will cause the minter to look for noid commands, one per line, in the
POSTdata part of thedTTP request. Ifyou put noid commands in a fimyCommands
and run the Unix utility

curl --data-binary @myCommands \
"http://foo.ucop.edu/nd/noidu_kt57?-’

you could, for example, change theyGoto” bindings for 500 noids in that one shell
command. Theutput from each command in the file will be separated from the next (on
the standard output) by a blank line.

NAME RESOLUTION AND REDIRECTION INTERF ACE
In a URI context,name esolutionis a computation, sometimes multi-stage, that trans-
lates a name into associated information of a particular type, often another name or an
address. Aresolveris a system that can perform one or more stages of a resolution.
Noid minters can be set up as resolvers.

In our case, we’re interested in automatically translating access requests for each of a
number of identifiers into requests for another kind of identiflénis is one tool in the
persistent access strategy for naming schemes sugRlasARK, PURL, Handle,DOI,
andURN. You can use a noid minter to bind a second name to each idestéeito
identifiers that the minter did not generate. In principle, this will work with names from
ary scheme.

With web browsers, a central mechanism for name resolution is known as the server redi-
rect, and mainstream web servers can easily be configured to redirect a half million dif-
ferent names without suffering in performand@u might choose not to use natiweb

sener redirects if you require resolution ovesal million names, or if you require soft-

ware and infrastructure for non-URL-based naméfatever your choice, maintaining a

table that maps the first name to the second is arougiadle burden.

As with theURL interface, ag number of resolers (minters underneath) can be operated

CDL 0.424 2006-04-19 12

NOID(1) Batchldentifier Infrastructure NOID(1)

behind a web server from a browser or a tool thataies URLs. This section describes
a me-time set up procedure to nesyour server ware of resolvers, followed by another
set up procedure for each resalvThe one-time procedurevidlves creating a directory
in your web sergr document tree where you will place one or more noid resolv
databases. Ithis example (and in the previous example), wehidecs/nd

mkdir htdocs/nd
cp -p /usr/local/bin/noid htdocs/nd/

The second command alaeates anxecutable cop of the noid script that will be
linked to for each resolver you intend tgpese. © make your server recognize such
links, include the line (this is slightly dgrent from the similar line in the previous sec-
tion),

ScriptAliasMatch “/nd/noidr(.*) "/srviwww/htdocs/nd/noidr$1"

in your server configuration filelf you did not install the supportinjoid.pmmodule
normally, you may also ha © dore a cop of it next to the script. Then include the fol-
lowing lines in the configuration file; thdorm the start of a rewriting rule section that
you will add to later for each resolver that you set up.

RewriteEngine on

These next two files and their containing
directory should be owned by "wwwrun".
RewriteLock /var/log/rewrite/lock
RewriteLog Ivar/log/rewrite/log

RewriteLogLevel 9

The non-comment lines ab®initialize the revriting system, identify the lock file used to
synchronize access to the resmhand identify the log file which can help in finalizing

the exact rewrite rules that you use; disable logging with the defawititRleogLevel

value of 0, or set it as high as 9, with higher numbers producing more detailed informa-
tion. Thiscompletes the one-time server set up for resolvers.

Thereafterfor each resolver that you wish to run, you need to set up a noid database and
create a link of the formoidr... so that the noid script can bevaked in resolution mode.
Unlike the URL interface, the resolution interface does not itself mint from the underlying
minter A separate@JRL interface may still be set up to mint and bind identifiers in the
resolver database, or minting and binding cae f#dce of the net.

In what follows, we will assume that youveaset up a noid database with the same loca-
tion and template as in the preus section. As before, the server is assumed to run
under the usertwwrun’ and the database resideshittlocs/nd/kt5 As if our intentions
included persistent identification, the minter in this example is for generating long term
identifiers.

cd htdocs/nd

noid dbcreate kt.reeded long 13030 cdlib.org dpg
mkdir kt5

mv NOID kt5/

In noid noidr_kt5

CDL 0.424 2006-04-19 13

NOID(1) Batchldentifier Infrastructure NOID(1)

The last command mek a ne hard link (not a soft link) to the noid script, which for
this resolver will be imoked under the namaoidr_kt5. The resolution interface is not
called by aURL directly, but is invoked once upon server startup, where tioedr... pre-
fix tells it to run in resolution mode. In this mode it loopsjtimg for and responding to
individual resolution attempts from the server itself.

To st up an individual resody, define a Rerrite Map followed by a set of Rewrite Rules.
This is done using seev configuration file lines as shown in the nexdraple. Aswith
ary change to the file, you will need to restart the sehefore it will hae the desired
effect.

External resolution; start program once on server start

RewriteMap rslv prg:/srviwww/htdocs/nd/noidr_kt5
Main lookup; add artificial prefix for subsequent testing

RewriteRule “/ark:/(13030/.%)$ "_rslv_${rslv:get $1 myGoto}"

Test: redirect [R] if it looks like a redirect
RewriteRule ~_rslv_([":]*:/1.%)$ $1[R]
Test: strip prefix; pass through [PT] if intended for us

RewriteRule ~_rslv_(/.*)$ $1 [PT]
Test: restore value if lookup failed; let come what may
RewriteRule ~_rslv_$ %{REQUEST_URI}

Alternative: redirect failed lookup to a global resolver

When a request resed by the server matches a Rewrite Rule, an attempt to eegolv
via the runningnoidr... script is made. In this example, we will need toehéiound a
string representing E@RL to the value for the fixed element nartimyGoto” under each
identifier that we wish to be resable. Buildingon the example from the previous sec-
tion, assume the elemenimyGoto” holds the sameJRL as before for the noid
13030/kt639k9 . A browser retrieal request made by entering or clicking on

http://foo.ucop.edu/ark:/13030/kt639k9
would then result in a server redirect to
http://foo.ucsd.edu/

The resolution result for an identifier is whagethe get returns, which could as easily
have retrieved a gored value as a rule-basealwe (allowing you to redirect mgusimilar
identifiers with one rule).

This approach to resolution does not address resolvervdigcoAn identifier found in

the wild need not easily veal whether it is actionable or resolvable, let alone which sys-
tem or resolver to askThe usual strategy for contemporary (web era) identifier schemes
relies on well-known, scheme-dependent resolvers and web proxying of identifiers
embedded in URLsFor example, global resolution for a non-proxiedkN or Handle

uses an undisclosed internet address, hard-coded into the resolver program, from which to
start the resolution procesfn ARK, PURL, or proxied Handle otJRN tend to rely on a
disclosed starting pointWhatever method is used for disgery, a moid resolver can in
principle be used to res@vdentifiers from ayp scheme.

CDL 0.424 2006-04-19 14

NOID(1) Batchldentifier Infrastructure NOID(1)

NOID CHECK DIGIT ALGORITHM
The following describes the Noid Check Digit AlgorithidGDA). Digitsin question are
actually ‘extended digits”, orxdigits which form an ordered set &digits and charac-
ters. Thisset has radiR. In the examples belg we wse a specific set 6=29 xdigits.

When applied to substrings of well-formed identifiers, where the length of the substring is
less thanR, the NCDA is “perfect’ for single digit and transposition errors, by far the
most common user transcription errors (see@i®®&ressoud, Stan WagonCbmputa-

tional Number Theory2000, Key College Publishind). The NCDA is complemented by
well-formedness rules that confirm the placement of constant data, inclugidddbels

and awy characters that are not extended digits. After running\tbeA on the selected
substring, the resulting check digit, an xdigit actyayused either for comparing with a
receved check digit or for appending to the substring prior to issuing the identifier that
will contain it.

For the algorithm to wrk, the substring in question must be less fRaharacters. The
extended digit set used in the current instance is a sequeRse28frintable characters
defined as follows:

xdigt: 0 1 2 3 45 6 7 8 9 bocdfg
value: 0 1 2 3 4 5 6 7 8 9 1011121314

xdigit: h j k mnpqgrstvwxz
value: 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Each xdigit in the identifier has the corresponding ordinal valuerrsh@ny character
not in the xdigit set is considered in the algorithm teeten ordinal value of zero.

A check digit is an xdigit computed from the base substring and then appended to form
the ‘checlked substring’(less thanR+1 characters long).To determine if a receed
identifier has been corrupted by a single digit or transposition #reoreleant substring

is extracted and its last character is compared to the result of the same computation per
formed on the preceding substring characters.

The computation has twdeps. Considea base substring (no check digit appended)
such as

13030/xf93gt2 (base substring)

Step 1. Check that the substring is well-formed, that is, that all non-xdigit characters
(often constant character data) are exactly where expected; if not, the substring is not
well-formed and the computation abor{his step is required to accommodate charac-
ters such as “Ithat contribute nothing to theverall computation.)

Step 2. Multiply each charactsrtrdinal value by its position number (starting at posi-
tion 1), and sum the productBor example,

char: 1 3 0 3 O [/ x f 9 3 g t 2
ord: 1 3 0 3 0O o0 27 13 9 3 14 24 2
pos: 1 2 3 4 5 6 7 8 9 10 11 12 13

prod:1+6 +0+12 + 0 + 0+189+104 +81 +30+154+288 +26=891

Step 3. The check digit is the xdigit whose ordinal value is that sum mBdalwide

CDL 0.424 2006-04-19 15

NOID(1) Batchldentifier Infrastructure NOID(1)

the sum byR and tale the remainder).

In the kample,891 = 21 modR (29) and so the check digit g8 This is appended to
obtain the “checked substring”, which is

13030/xf93gt2q (substring with check digit appended)

What follows is a tw-part proof that this algorithm igpeérfect” with respect to single
digit and transposition errors.

Lemma 1: TheNCDA is guaranteed against single-character errors.

Proof: We nmust prave that if two grings differ in one single charactehen the check
digit (xdigit) also difers. If the n—th xdigit's adinal isd in one string ane in another
the sums of products differ only by

(..tnd+..)-(..+ne+..)=n(d-e)

The check digits differ only ii(d — e)is not0O mod R. Assume (contraposily) that
n(d — e)does equad modR. First, we knev thatn(d — e)is not zero becauseis posi-
tive and d is different frome. Therefore, there must be at least one p@sititegeri such

that
n(d-e)=Ri => (n/i)(d -e) =R
Now, becauseR is prime,
either (a) nfi=1 and d -e =R
or (b) n/i =R and d -e =1

But (a) cannot hold because xdigit ordinals differ by at rRest This leaves (b), which
implies that there is an irgeri = n/R. But sinceR is prime anch (a position number) is
a positive integer less thamR, then0 <i< 1, which cannot be true. So the check digits
must differ.

Lemma 2: TheNCDA is guaranteed against transposition af timgle characters.

Proof: Non-contribting characters (non—xdigits) transposed with other characters will
be detected in Step 1 when checking the constraints for well-formedness (e.q:, the *
must be at position 6 and only at position 6). Therefore we need only consider transposi-
tion of two xdigit characters We nust prave that if one string has an xdigit of ordiral

in positioni and an xdigit of ordinafl in positionj, and if another string is the same
except for haing d in positioni ande in positionj, then the check digits also t#if. The

sums of the products differ by

(..+tie+. .. +jd+.)-(..+id+...+je+..)
(ie+jd)-(id+je)y=e(i-j) +d(-i
dg-i)-e(-i = n(d-e)
wheren =j—i>0 andn <R. The check digits differ only ifi(d — €) = OmodR. This
reduces to the central statement of Lemma 1, which has been pro

TO DO
Add features that are documented bot implemented yetElement-\alue binding upon
minting; the peppermint command. Theppend and prepend kinds of binding cur
rently have gring-level semantics (ne data is added as characters to amistang

CDL 0.424 2006-04-19 16

NOID(1) Batchldentifier Infrastructure NOID(1)

element); should there also be listdesemantics (n& data added as an extra subele-
ment)?

Add extra options fodbcreate An option to specify one or more identifier labels to
strip from requests, and one canonical label to add upon minting and repdkting.
option to set the initial seed for quasi-random ordering. Utilize the granulaelBgDi8
transaction and locking protection mechanisms.

Extend the Template Mask to alldor other character repertoires with prime numbers of
elements. Theseould trade a some eye-friendliness for much more compact identifiers
(cf. UUID/GUID), possibly also a ay of asking that the last character of the repertoire
only appear in the check character (e.g., for i and x below).

{ 0-9x} cardinality 11, mask char i
{ 0-9af_} cardinality 17, mask char x
{0-9a-z _} cardinality 37, mask char v
{ 1-9b-zB-Z}-{l, vowels} cardinality 47, mask char E
{09azA-Z#*+@ _} cardinality 67, mask char w

Visible ASCIl - {% -./\} cardinality 89, mask char c

Add support for simple file management associated with identifiewsexample, mint-
ing (and reminting) the noidv8t984 could result in the creation (and re—creation) of a
corresponding canonical directoxy/8t/98/4/

BETA SOFTWARE
This utility is in the beta phase ofvd#opment. Itis open source software written in the
Perl scripting language with strictest type, value, and security checking ensiiele.
its readiness for long term application is still beingl@ated, it comes with a gnong
suite of regression tests (currently about 250).

COPYRIGHT AND LICENSE
Copyright 2002-2004C Regents. BSD-typ®pen source license.

BUGS
Under case-insensie file systems (e.g., MaOS X), there is a chance for conflicts
between the directory namROID, script name noid, and module documentation
requested (via perldoc) akoid.

Not yet platform—-independent.
Please report bugs to jak at ucop dot edu.

FILES
NOID directory containing all database files related to a minter

NOID/noid.bdb the BerkeleyDB database file at the heart of a minter
NOID/README the creation record containing minter analysis details

SEE ALSO
dbopen(3), perl (1), uuidgen(1), <http://www.cdlib.org/inside/diglib/ark/>

AUTHORS
John A. Kunze, Michael A. Russell

CDL 0.424 2006-04-19 17

NOID(1) Batchldentifier Infrastructure NOID(1)

PREREQUISITES
Perl Modules: Noid, BekdeyDB, Config, Bxt::ParseWrds, Getopt::Long, Fcntl,
Sys::Hosthame

Script Categories:
CGI UNIX : System_administration Web

CDL 0.424 2006-04-19 18

